MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. SAE-AISI 1330 Steel

CC380H copper-nickel belongs to the copper alloys classification, while SAE-AISI 1330 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is SAE-AISI 1330 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
11 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
73
Tensile Strength: Ultimate (UTS), MPa 310
520 to 710
Tensile Strength: Yield (Proof), MPa 120
290 to 610

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1130
1460
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 300
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
76 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 59
230 to 990
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
19 to 25
Strength to Weight: Bending, points 12
18 to 23
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 11
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.28 to 0.33
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
97.3 to 98
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
1.6 to 1.9
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.5
0