MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. N06975 Nickel

CC380H copper-nickel belongs to the copper alloys classification, while N06975 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 26
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
80
Tensile Strength: Ultimate (UTS), MPa 310
660
Tensile Strength: Yield (Proof), MPa 120
250

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1130
1430
Melting Onset (Solidus), °C 1080
1380
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
50
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 3.8
8.9
Embodied Energy, MJ/kg 58
120
Embodied Water, L/kg 300
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
240
Resilience: Unit (Modulus of Resilience), kJ/m3 59
150
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
22
Strength to Weight: Bending, points 12
20
Thermal Shock Resistance, points 11
18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 84.5 to 89
0.7 to 1.2
Iron (Fe), % 1.0 to 1.8
10.2 to 23.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 9.0 to 11
47 to 52
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.7 to 1.5
Zinc (Zn), % 0 to 0.5
0