MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. S21800 Stainless Steel

CC380H copper-nickel belongs to the copper alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
210
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
75
Tensile Strength: Ultimate (UTS), MPa 310
740
Tensile Strength: Yield (Proof), MPa 120
390

Thermal Properties

Latent Heat of Fusion, J/g 220
340
Maximum Temperature: Mechanical, °C 220
900
Melting Completion (Liquidus), °C 1130
1360
Melting Onset (Solidus), °C 1080
1310
Specific Heat Capacity, J/kg-K 390
500
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 8.9
7.5
Embodied Carbon, kg CO2/kg material 3.8
3.1
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
250
Resilience: Unit (Modulus of Resilience), kJ/m3 59
390
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 9.8
27
Strength to Weight: Bending, points 12
24
Thermal Shock Resistance, points 11
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
59.1 to 65.4
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
7.0 to 9.0
Nickel (Ni), % 9.0 to 11
8.0 to 9.0
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.1
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0