MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. S35125 Stainless Steel

CC380H copper-nickel belongs to the copper alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 26
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
78
Tensile Strength: Ultimate (UTS), MPa 310
540
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1130
1430
Melting Onset (Solidus), °C 1080
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 3.8
6.4
Embodied Energy, MJ/kg 58
89
Embodied Water, L/kg 300
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
170
Resilience: Unit (Modulus of Resilience), kJ/m3 59
140
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
19
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
36.2 to 45.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 9.0 to 11
31 to 35
Niobium (Nb), % 0 to 1.0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.5
0