MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. 5059 Aluminum

CC381H copper-nickel belongs to the copper alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
69
Elongation at Break, % 20
11 to 25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 52
26
Tensile Strength: Ultimate (UTS), MPa 380
350 to 410
Tensile Strength: Yield (Proof), MPa 140
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 240
390
Maximum Temperature: Mechanical, °C 260
210
Melting Completion (Liquidus), °C 1180
650
Melting Onset (Solidus), °C 1120
510
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 30
110
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
29
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.0
9.1
Embodied Energy, MJ/kg 73
160
Embodied Water, L/kg 280
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 68
220 to 650
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 12
36 to 42
Strength to Weight: Bending, points 13
41 to 45
Thermal Diffusivity, mm2/s 8.4
44
Thermal Shock Resistance, points 13
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.010
89.9 to 94
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 64.5 to 69.9
0 to 0.25
Iron (Fe), % 0.5 to 1.5
0 to 0.5
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0.6 to 1.2
0.6 to 1.2
Nickel (Ni), % 29 to 31
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0 to 0.45
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15