MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. 6066 Aluminum

CC381H copper-nickel belongs to the copper alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
70
Elongation at Break, % 20
7.8 to 17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 52
26
Tensile Strength: Ultimate (UTS), MPa 380
160 to 400
Tensile Strength: Yield (Proof), MPa 140
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
170
Melting Completion (Liquidus), °C 1180
650
Melting Onset (Solidus), °C 1120
560
Specific Heat Capacity, J/kg-K 410
890
Thermal Conductivity, W/m-K 30
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
40
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 5.0
8.3
Embodied Energy, MJ/kg 73
150
Embodied Water, L/kg 280
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 68
61 to 920
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12
16 to 39
Strength to Weight: Bending, points 13
23 to 43
Thermal Diffusivity, mm2/s 8.4
61
Thermal Shock Resistance, points 13
6.9 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.010
93 to 97
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 64.5 to 69.9
0.7 to 1.2
Iron (Fe), % 0.5 to 1.5
0 to 0.5
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0.6 to 1.2
0.6 to 1.1
Nickel (Ni), % 29 to 31
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0.9 to 1.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15