MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. AISI 310HCb Stainless Steel

CC381H copper-nickel belongs to the copper alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
190
Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 20
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
78
Tensile Strength: Ultimate (UTS), MPa 380
590
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1180
1410
Melting Onset (Solidus), °C 1120
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.0
4.8
Embodied Energy, MJ/kg 73
69
Embodied Water, L/kg 280
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
210
Resilience: Unit (Modulus of Resilience), kJ/m3 68
130
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 8.4
3.9
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 64.5 to 69.9
0
Iron (Fe), % 0.5 to 1.5
48 to 57
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Nickel (Ni), % 29 to 31
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0 to 0.010
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Zinc (Zn), % 0 to 0.5
0