MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. Grade 16 Titanium

CC381H copper-nickel belongs to the copper alloys classification, while grade 16 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is grade 16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
23
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
38
Tensile Strength: Ultimate (UTS), MPa 380
400
Tensile Strength: Yield (Proof), MPa 140
340

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 260
320
Melting Completion (Liquidus), °C 1180
1660
Melting Onset (Solidus), °C 1120
1610
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 30
22
Thermal Expansion, µm/m-K 16
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
7.2

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.0
36
Embodied Energy, MJ/kg 73
600
Embodied Water, L/kg 280
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
86
Resilience: Unit (Modulus of Resilience), kJ/m3 68
550
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 12
25
Strength to Weight: Bending, points 13
27
Thermal Diffusivity, mm2/s 8.4
8.9
Thermal Shock Resistance, points 13
29

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.080
Copper (Cu), % 64.5 to 69.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.3
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 99.96
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4