MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. Grade Ti-Pd8A Titanium

CC381H copper-nickel belongs to the copper alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
200
Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
13
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 380
500
Tensile Strength: Yield (Proof), MPa 140
430

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 260
320
Melting Completion (Liquidus), °C 1180
1660
Melting Onset (Solidus), °C 1120
1610
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 30
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.0
49
Embodied Energy, MJ/kg 73
840
Embodied Water, L/kg 280
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
65
Resilience: Unit (Modulus of Resilience), kJ/m3 68
880
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 12
31
Strength to Weight: Bending, points 13
31
Thermal Diffusivity, mm2/s 8.4
8.6
Thermal Shock Resistance, points 13
39

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.1
Copper (Cu), % 64.5 to 69.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 99.9
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4