MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. C14500 Copper

Both CC381H copper-nickel and C14500 copper are copper alloys. They have 67% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 20
12 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 52
43
Tensile Strength: Ultimate (UTS), MPa 380
220 to 330
Tensile Strength: Yield (Proof), MPa 140
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 260
200
Melting Completion (Liquidus), °C 1180
1080
Melting Onset (Solidus), °C 1120
1050
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 30
360
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
94
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 40
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.0
2.6
Embodied Energy, MJ/kg 73
42
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 68
21 to 300
Stiffness to Weight: Axial, points 8.6
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 12
6.8 to 10
Strength to Weight: Bending, points 13
9.1 to 12
Thermal Diffusivity, mm2/s 8.4
100
Thermal Shock Resistance, points 13
8.0 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 64.5 to 69.9
99.2 to 99.596
Iron (Fe), % 0.5 to 1.5
0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Phosphorus (P), % 0 to 0.010
0.0040 to 0.012
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0
0.4 to 0.7
Zinc (Zn), % 0 to 0.5
0