MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. R04295 Alloy

CC381H copper-nickel belongs to the copper alloys classification, while R04295 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is R04295 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
100
Elongation at Break, % 20
22
Poisson's Ratio 0.33
0.38
Shear Modulus, GPa 52
37
Tensile Strength: Ultimate (UTS), MPa 380
410
Tensile Strength: Yield (Proof), MPa 140
300

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Specific Heat Capacity, J/kg-K 410
260
Thermal Expansion, µm/m-K 16
7.2

Otherwise Unclassified Properties

Density, g/cm3 8.9
9.0
Embodied Water, L/kg 280
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
84
Resilience: Unit (Modulus of Resilience), kJ/m3 68
430
Stiffness to Weight: Axial, points 8.6
6.3
Stiffness to Weight: Bending, points 19
17
Strength to Weight: Axial, points 12
13
Strength to Weight: Bending, points 13
14
Thermal Shock Resistance, points 13
40

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.015
Copper (Cu), % 64.5 to 69.9
0
Hafnium (Hf), % 0
9.0 to 11
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0.5 to 1.5
0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0
85.9 to 90.3
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.7 to 1.3
Tungsten (W), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.7