MakeItFrom.com
Menu (ESC)

CC381H Copper-nickel vs. S44660 Stainless Steel

CC381H copper-nickel belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC381H copper-nickel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210
Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 20
20
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 52
81
Tensile Strength: Ultimate (UTS), MPa 380
660
Tensile Strength: Yield (Proof), MPa 140
510

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1410
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 30
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
21
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.0
4.3
Embodied Energy, MJ/kg 73
61
Embodied Water, L/kg 280
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
120
Resilience: Unit (Modulus of Resilience), kJ/m3 68
640
Stiffness to Weight: Axial, points 8.6
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 8.4
4.5
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 64.5 to 69.9
0
Iron (Fe), % 0.5 to 1.5
60.4 to 71
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 29 to 31
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.5
0