MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. 5454 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 140
69
Elongation at Break, % 20
2.3 to 18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
26
Tensile Strength: Ultimate (UTS), MPa 490
230 to 350
Tensile Strength: Yield (Proof), MPa 290
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 260
190
Melting Completion (Liquidus), °C 1180
650
Melting Onset (Solidus), °C 1120
600
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.2
8.6
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 290
68 to 590
Stiffness to Weight: Axial, points 8.8
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 15
23 to 36
Strength to Weight: Bending, points 16
30 to 41
Thermal Diffusivity, mm2/s 8.2
55
Thermal Shock Resistance, points 16
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.010
94.5 to 97.1
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0.050 to 0.2
Copper (Cu), % 62.8 to 68.4
0 to 0.1
Iron (Fe), % 0.5 to 1.0
0 to 0.4
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
2.4 to 3.0
Manganese (Mn), % 0.5 to 1.0
0.5 to 1.0
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15