MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. 6018 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
69
Elongation at Break, % 20
9.0 to 9.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
26
Tensile Strength: Ultimate (UTS), MPa 490
290 to 300
Tensile Strength: Yield (Proof), MPa 290
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 260
160
Melting Completion (Liquidus), °C 1180
640
Melting Onset (Solidus), °C 1120
570
Specific Heat Capacity, J/kg-K 410
890
Thermal Conductivity, W/m-K 30
170
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
44
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 41
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 5.2
8.2
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 290
360 to 380
Stiffness to Weight: Axial, points 8.8
13
Stiffness to Weight: Bending, points 20
48
Strength to Weight: Axial, points 15
28 to 29
Strength to Weight: Bending, points 16
34 to 35
Thermal Diffusivity, mm2/s 8.2
65
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0 to 0.010
93.1 to 97.8
Bismuth (Bi), % 0 to 0.0020
0.4 to 0.7
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0 to 0.1
Copper (Cu), % 62.8 to 68.4
0.15 to 0.4
Iron (Fe), % 0.5 to 1.0
0 to 0.7
Lead (Pb), % 0 to 0.0050
0.4 to 1.2
Magnesium (Mg), % 0 to 0.010
0.6 to 1.2
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.8
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0.5 to 1.2
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.3
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15