MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. A444.0 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while A444.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
70
Elongation at Break, % 20
18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
26
Tensile Strength: Ultimate (UTS), MPa 490
160
Tensile Strength: Yield (Proof), MPa 290
66

Thermal Properties

Latent Heat of Fusion, J/g 240
500
Maximum Temperature: Mechanical, °C 260
170
Melting Completion (Liquidus), °C 1180
630
Melting Onset (Solidus), °C 1120
590
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 30
160
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 5.2
7.9
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
24
Resilience: Unit (Modulus of Resilience), kJ/m3 290
31
Stiffness to Weight: Axial, points 8.8
15
Stiffness to Weight: Bending, points 20
53
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 8.2
68
Thermal Shock Resistance, points 16
7.3

Alloy Composition

Aluminum (Al), % 0 to 0.010
91.6 to 93.5
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
0 to 0.1
Iron (Fe), % 0.5 to 1.0
0 to 0.2
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0 to 0.050
Manganese (Mn), % 0.5 to 1.0
0 to 0.1
Nickel (Ni), % 29 to 32
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15