MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. AWS ER80S-B3L

CC382H copper-nickel belongs to the copper alloys classification, while AWS ER80S-B3L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 53
74
Tensile Strength: Ultimate (UTS), MPa 490
630
Tensile Strength: Yield (Proof), MPa 290
530

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1120
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 30
41
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
4.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.2
1.8
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 290
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
730
Stiffness to Weight: Axial, points 8.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 8.2
11
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 1.5 to 2.0
2.3 to 2.7
Copper (Cu), % 62.8 to 68.4
0 to 0.35
Iron (Fe), % 0.5 to 1.0
93.6 to 96
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 29 to 32
0 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.025
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0.4 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.025
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5