MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. EN AC-45300 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
94 to 120
Elastic (Young's, Tensile) Modulus, GPa 140
71
Elongation at Break, % 20
1.0 to 2.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
27
Tensile Strength: Ultimate (UTS), MPa 490
220 to 290
Tensile Strength: Yield (Proof), MPa 290
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 240
470
Maximum Temperature: Mechanical, °C 260
170
Melting Completion (Liquidus), °C 1180
630
Melting Onset (Solidus), °C 1120
590
Specific Heat Capacity, J/kg-K 410
890
Thermal Conductivity, W/m-K 30
150
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.2
8.0
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 290
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 290
160 to 390
Stiffness to Weight: Axial, points 8.8
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 15
23 to 29
Strength to Weight: Bending, points 16
30 to 35
Thermal Diffusivity, mm2/s 8.2
60
Thermal Shock Resistance, points 16
10 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.010
90.2 to 94.2
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
1.0 to 1.5
Iron (Fe), % 0.5 to 1.0
0 to 0.65
Lead (Pb), % 0 to 0.0050
0 to 0.15
Magnesium (Mg), % 0 to 0.010
0.35 to 0.65
Manganese (Mn), % 0.5 to 1.0
0 to 0.55
Nickel (Ni), % 29 to 32
0 to 0.25
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.15
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15