MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. EN AC-47000 Aluminum

CC382H copper-nickel belongs to the copper alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
60
Elastic (Young's, Tensile) Modulus, GPa 140
73
Elongation at Break, % 20
1.7
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 53
27
Tensile Strength: Ultimate (UTS), MPa 490
180
Tensile Strength: Yield (Proof), MPa 290
97

Thermal Properties

Latent Heat of Fusion, J/g 240
570
Maximum Temperature: Mechanical, °C 260
170
Melting Completion (Liquidus), °C 1180
590
Melting Onset (Solidus), °C 1120
570
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 30
130
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 5.2
7.7
Embodied Energy, MJ/kg 76
140
Embodied Water, L/kg 290
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 290
65
Stiffness to Weight: Axial, points 8.8
16
Stiffness to Weight: Bending, points 20
54
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
27
Thermal Diffusivity, mm2/s 8.2
55
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0 to 0.010
82.1 to 89.5
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0 to 0.1
Copper (Cu), % 62.8 to 68.4
0 to 1.0
Iron (Fe), % 0.5 to 1.0
0 to 0.8
Lead (Pb), % 0 to 0.0050
0 to 0.2
Magnesium (Mg), % 0 to 0.010
0 to 0.35
Manganese (Mn), % 0.5 to 1.0
0.050 to 0.55
Nickel (Ni), % 29 to 32
0 to 0.3
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.55
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.25