MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. C19025 Copper

Both CC382H copper-nickel and C19025 copper are copper alloys. They have 67% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is C19025 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 20
8.0 to 17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 53
43
Tensile Strength: Ultimate (UTS), MPa 490
480 to 620

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 260
200
Melting Completion (Liquidus), °C 1180
1080
Melting Onset (Solidus), °C 1120
1020
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 30
160
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
40

Otherwise Unclassified Properties

Base Metal Price, % relative 41
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.2
2.8
Embodied Energy, MJ/kg 76
44
Embodied Water, L/kg 290
320

Common Calculations

Stiffness to Weight: Axial, points 8.8
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 15
15 to 19
Strength to Weight: Bending, points 16
15 to 18
Thermal Diffusivity, mm2/s 8.2
47
Thermal Shock Resistance, points 16
17 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
97.1 to 98.5
Iron (Fe), % 0.5 to 1.0
0
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 29 to 32
0.8 to 1.2
Phosphorus (P), % 0 to 0.010
0.030 to 0.070
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.0050
0
Tin (Sn), % 0
0.7 to 1.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.3