MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. C96800 Copper

Both CC382H copper-nickel and C96800 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
120
Elongation at Break, % 20
3.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 53
46
Tensile Strength: Ultimate (UTS), MPa 490
1010
Tensile Strength: Yield (Proof), MPa 290
860

Thermal Properties

Latent Heat of Fusion, J/g 240
220
Maximum Temperature: Mechanical, °C 260
220
Melting Completion (Liquidus), °C 1180
1120
Melting Onset (Solidus), °C 1120
1060
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 30
52
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 41
34
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.2
3.4
Embodied Energy, MJ/kg 76
52
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
33
Resilience: Unit (Modulus of Resilience), kJ/m3 290
3000
Stiffness to Weight: Axial, points 8.8
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 15
32
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 8.2
15
Thermal Shock Resistance, points 16
35

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 1.5 to 2.0
0
Copper (Cu), % 62.8 to 68.4
87.1 to 90.5
Iron (Fe), % 0.5 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.0050
0 to 0.0050
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0.050 to 0.3
Nickel (Ni), % 29 to 32
9.5 to 10.5
Phosphorus (P), % 0 to 0.010
0 to 0.0050
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.0025
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0 to 1.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5