MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. 6105 Aluminum

CC383H copper-nickel belongs to the copper alloys classification, while 6105 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
68
Elongation at Break, % 20
9.0 to 16
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 52
26
Tensile Strength: Ultimate (UTS), MPa 490
190 to 280
Tensile Strength: Yield (Proof), MPa 260
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
160
Melting Completion (Liquidus), °C 1180
650
Melting Onset (Solidus), °C 1130
600
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 29
180 to 190
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 44
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 5.7
8.3
Embodied Energy, MJ/kg 83
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100 to 550
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 15
20 to 29
Strength to Weight: Bending, points 16
28 to 35
Thermal Diffusivity, mm2/s 8.1
72 to 79
Thermal Shock Resistance, points 17
8.6 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.010
97.2 to 99
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 64 to 69.1
0 to 0.1
Iron (Fe), % 0.5 to 1.5
0 to 0.35
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0.45 to 0.8
Manganese (Mn), % 0.6 to 1.2
0 to 0.1
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0.6 to 1.0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15