MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. 7175 Aluminum

CC383H copper-nickel belongs to the copper alloys classification, while 7175 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
70
Elongation at Break, % 20
3.8 to 5.9
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
26
Tensile Strength: Ultimate (UTS), MPa 490
520 to 570
Tensile Strength: Yield (Proof), MPa 260
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 240
380
Maximum Temperature: Mechanical, °C 260
180
Melting Completion (Liquidus), °C 1180
640
Melting Onset (Solidus), °C 1130
480
Specific Heat Capacity, J/kg-K 410
870
Thermal Conductivity, W/m-K 29
140
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
33
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
99

Otherwise Unclassified Properties

Base Metal Price, % relative 44
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 5.7
8.2
Embodied Energy, MJ/kg 83
150
Embodied Water, L/kg 280
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1310 to 1730
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 15
48 to 52
Strength to Weight: Bending, points 16
48 to 51
Thermal Diffusivity, mm2/s 8.1
53
Thermal Shock Resistance, points 17
23 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.010
88 to 91.4
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 64 to 69.1
1.2 to 2.0
Iron (Fe), % 0.5 to 1.5
0 to 0.2
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
2.1 to 2.9
Manganese (Mn), % 0.6 to 1.2
0 to 0.1
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
5.1 to 6.1
Residuals, % 0
0 to 0.15