MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. ASTM A209 Steel

CC383H copper-nickel belongs to the copper alloys classification, while ASTM A209 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is ASTM A209 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
140 to 150
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 490
420 to 460
Tensile Strength: Yield (Proof), MPa 260
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
410
Melting Completion (Liquidus), °C 1180
1470
Melting Onset (Solidus), °C 1130
1420 to 1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 29
50
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
8.1 to 8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 44
2.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.7
1.5
Embodied Energy, MJ/kg 83
20
Embodied Water, L/kg 280
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130 to 170
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
15 to 16
Strength to Weight: Bending, points 16
16 to 17
Thermal Diffusivity, mm2/s 8.1
13
Thermal Shock Resistance, points 17
12 to 14