MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. ASTM A225 Steel

CC383H copper-nickel belongs to the copper alloys classification, while ASTM A225 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is ASTM A225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
190 to 250
Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
21 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 52
73
Tensile Strength: Ultimate (UTS), MPa 490
620 to 830
Tensile Strength: Yield (Proof), MPa 260
460 to 550

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
400
Melting Completion (Liquidus), °C 1180
1460
Melting Onset (Solidus), °C 1130
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 29
52
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 44
2.3
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.7
1.8
Embodied Energy, MJ/kg 83
24 to 25
Embodied Water, L/kg 280
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
120 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
580 to 820
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
22 to 29
Strength to Weight: Bending, points 16
21 to 25
Thermal Diffusivity, mm2/s 8.1
14
Thermal Shock Resistance, points 17
18 to 24