MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. AWS E80C-B8

CC383H copper-nickel belongs to the copper alloys classification, while AWS E80C-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is AWS E80C-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 20
19
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 52
75
Tensile Strength: Ultimate (UTS), MPa 490
620
Tensile Strength: Yield (Proof), MPa 260
540

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Melting Completion (Liquidus), °C 1180
1450
Melting Onset (Solidus), °C 1130
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 29
25
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 44
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.7
2.1
Embodied Energy, MJ/kg 83
28
Embodied Water, L/kg 280
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
740
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 8.1
6.9
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 64 to 69.1
0 to 0.35
Iron (Fe), % 0.5 to 1.5
85.5 to 90.6
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0.4 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 29 to 31
0 to 0.2
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0.25 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.025
Tellurium (Te), % 0 to 0.010
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5