MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. Grade C-2 Titanium

CC383H copper-nickel belongs to the copper alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180
Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 490
390
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 260
320
Melting Completion (Liquidus), °C 1180
1660
Melting Onset (Solidus), °C 1130
1610
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 29
21
Thermal Expansion, µm/m-K 15
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 44
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.7
31
Embodied Energy, MJ/kg 83
510
Embodied Water, L/kg 280
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
61
Resilience: Unit (Modulus of Resilience), kJ/m3 250
460
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
26
Thermal Diffusivity, mm2/s 8.1
8.8
Thermal Shock Resistance, points 17
30

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0 to 0.1
Copper (Cu), % 64 to 69.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.2
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0 to 0.050
Niobium (Nb), % 0.5 to 1.0
0
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 100
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4