MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. C27200 Brass

Both CC383H copper-nickel and C27200 brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
10 to 50
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 490
370 to 590
Tensile Strength: Yield (Proof), MPa 260
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 260
130
Melting Completion (Liquidus), °C 1180
920
Melting Onset (Solidus), °C 1130
870
Specific Heat Capacity, J/kg-K 410
390
Thermal Conductivity, W/m-K 29
120
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 44
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 5.7
2.7
Embodied Energy, MJ/kg 83
45
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 810
Stiffness to Weight: Axial, points 8.6
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15
13 to 20
Strength to Weight: Bending, points 16
14 to 19
Thermal Diffusivity, mm2/s 8.1
37
Thermal Shock Resistance, points 17
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 64 to 69.1
62 to 65
Iron (Fe), % 0.5 to 1.5
0 to 0.070
Lead (Pb), % 0 to 0.010
0 to 0.070
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0.5 to 1.0
0
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Zinc (Zn), % 0 to 0.5
34.6 to 38
Residuals, % 0
0 to 0.3