MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. 5049 Aluminum

CC480K bronze belongs to the copper alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC480K bronze and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 88
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
2.0 to 18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 300
210 to 330
Tensile Strength: Yield (Proof), MPa 180
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 1010
650
Melting Onset (Solidus), °C 900
620
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 63
140
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 11
110

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.5
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.5
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 390
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 140
59 to 570
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 9.6
22 to 34
Strength to Weight: Bending, points 11
29 to 39
Thermal Diffusivity, mm2/s 20
56
Thermal Shock Resistance, points 11
9.3 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.010
94.7 to 97.9
Antimony (Sb), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 86 to 90
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0 to 1.0
0
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0 to 0.1
0.5 to 1.1
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0 to 0.4
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.15