MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. EN 1.0434 Steel

CC480K bronze belongs to the copper alloys classification, while EN 1.0434 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 88
110 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
12 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 300
390 to 540
Tensile Strength: Yield (Proof), MPa 180
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1010
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 63
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 59
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170 to 540
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6
14 to 19
Strength to Weight: Bending, points 11
15 to 19
Thermal Diffusivity, mm2/s 20
14
Thermal Shock Resistance, points 11
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.020 to 0.060
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.15 to 0.19
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.2
98.8 to 99.18
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.65 to 0.85
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.2
0 to 0.025
Silicon (Si), % 0 to 0.020
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.5
0