MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. EN 1.4125 Stainless Steel

CC480K bronze belongs to the copper alloys classification, while EN 1.4125 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is EN 1.4125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 88
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
19
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 300
800
Tensile Strength: Yield (Proof), MPa 180
470

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1010
1430
Melting Onset (Solidus), °C 900
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 63
15
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
9.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.3
Embodied Energy, MJ/kg 59
32
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
570
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
29
Strength to Weight: Bending, points 11
25
Thermal Diffusivity, mm2/s 20
4.1
Thermal Shock Resistance, points 11
29

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.2
78 to 82.7
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.8
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.5
0