MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. C66200 Brass

Both CC480K bronze and C66200 brass are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
8.0 to 15
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 300
450 to 520
Tensile Strength: Yield (Proof), MPa 180
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1010
1070
Melting Onset (Solidus), °C 900
1030
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 63
150
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 11
36

Otherwise Unclassified Properties

Base Metal Price, % relative 35
29
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 59
43
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 140
760 to 1030
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.6
14 to 17
Strength to Weight: Bending, points 11
15 to 16
Thermal Diffusivity, mm2/s 20
45
Thermal Shock Resistance, points 11
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 90
86.6 to 91
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0 to 1.0
0 to 0.050
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 2.0
0.3 to 1.0
Phosphorus (P), % 0 to 0.2
0.050 to 0.2
Silicon (Si), % 0 to 0.020
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
0.2 to 0.7
Zinc (Zn), % 0 to 0.5
6.5 to 12.9
Residuals, % 0
0 to 0.5