MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. C90500 Gun Metal

Both CC480K bronze and C90500 gun metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 99% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 300
320
Tensile Strength: Yield (Proof), MPa 180
160

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1010
1000
Melting Onset (Solidus), °C 900
850
Specific Heat Capacity, J/kg-K 370
370
Thermal Conductivity, W/m-K 63
75
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
11
Electrical Conductivity: Equal Weight (Specific), % IACS 11
11

Otherwise Unclassified Properties

Base Metal Price, % relative 35
35
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.7
3.6
Embodied Energy, MJ/kg 59
59
Embodied Water, L/kg 390
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
54
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 6.9
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
10
Strength to Weight: Bending, points 11
12
Thermal Diffusivity, mm2/s 20
23
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.0050
Antimony (Sb), % 0 to 0.2
0 to 0.2
Copper (Cu), % 86 to 90
86 to 89
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0 to 1.0
0 to 0.3
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.2
0 to 1.5
Silicon (Si), % 0 to 0.020
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 9.0 to 11
9.0 to 11
Zinc (Zn), % 0 to 0.5
1.0 to 3.0
Residuals, % 0
0 to 0.3