MakeItFrom.com
Menu (ESC)

CC481K Bronze vs. C40500 Penny Bronze

Both CC481K bronze and C40500 penny bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC481K bronze and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 4.5
3.0 to 49
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 350
270 to 540
Tensile Strength: Yield (Proof), MPa 180
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 880
1020
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 64
160
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
41
Electrical Conductivity: Equal Weight (Specific), % IACS 10
42

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 60
43
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
28 to 1200
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
8.5 to 17
Strength to Weight: Bending, points 13
10 to 17
Thermal Diffusivity, mm2/s 20
48
Thermal Shock Resistance, points 13
9.5 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.050
0
Copper (Cu), % 87 to 89.5
94 to 96
Iron (Fe), % 0 to 0.1
0 to 0.050
Lead (Pb), % 0 to 0.25
0 to 0.050
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0 to 1.0
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10 to 11.5
0.7 to 1.3
Zinc (Zn), % 0 to 0.5
2.1 to 5.3
Residuals, % 0
0 to 0.5