MakeItFrom.com
Menu (ESC)

CC481K Bronze vs. C49300 Brass

Both CC481K bronze and C49300 brass are copper alloys. They have 62% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC481K bronze and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 4.5
4.5 to 20
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 350
430 to 520
Tensile Strength: Yield (Proof), MPa 180
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 1000
880
Melting Onset (Solidus), °C 880
840
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 64
88
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
15
Electrical Conductivity: Equal Weight (Specific), % IACS 10
17

Otherwise Unclassified Properties

Base Metal Price, % relative 35
26
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 60
50
Embodied Water, L/kg 390
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 150
220 to 800
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
15 to 18
Strength to Weight: Bending, points 13
16 to 18
Thermal Diffusivity, mm2/s 20
29
Thermal Shock Resistance, points 13
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.5
Antimony (Sb), % 0 to 0.050
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 87 to 89.5
58 to 62
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.25
0 to 0.010
Manganese (Mn), % 0 to 0.050
0 to 0.030
Nickel (Ni), % 0 to 0.1
0 to 1.5
Phosphorus (P), % 0 to 1.0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.010
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10 to 11.5
1.0 to 1.8
Zinc (Zn), % 0 to 0.5
30.6 to 40.5
Residuals, % 0
0 to 0.5