MakeItFrom.com
Menu (ESC)

CC481K Bronze vs. C67400 Bronze

Both CC481K bronze and C67400 bronze are copper alloys. They have 59% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC481K bronze and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 4.5
22 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 350
480 to 610
Tensile Strength: Yield (Proof), MPa 180
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 1000
890
Melting Onset (Solidus), °C 880
870
Specific Heat Capacity, J/kg-K 370
400
Thermal Conductivity, W/m-K 64
100
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
23
Electrical Conductivity: Equal Weight (Specific), % IACS 10
26

Otherwise Unclassified Properties

Base Metal Price, % relative 35
23
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 60
48
Embodied Water, L/kg 390
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
300 to 660
Stiffness to Weight: Axial, points 6.9
7.5
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11
17 to 22
Strength to Weight: Bending, points 13
17 to 20
Thermal Diffusivity, mm2/s 20
32
Thermal Shock Resistance, points 13
16 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.5 to 2.0
Antimony (Sb), % 0 to 0.050
0
Copper (Cu), % 87 to 89.5
57 to 60
Iron (Fe), % 0 to 0.1
0 to 0.35
Lead (Pb), % 0 to 0.25
0 to 0.5
Manganese (Mn), % 0 to 0.050
2.0 to 3.5
Nickel (Ni), % 0 to 0.1
0 to 0.25
Phosphorus (P), % 0 to 1.0
0
Silicon (Si), % 0 to 0.010
0.5 to 1.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10 to 11.5
0 to 0.3
Zinc (Zn), % 0 to 0.5
31.1 to 40
Residuals, % 0
0 to 0.5