MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. CR008A Copper

Both CC482K bronze and CR008A copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is CR008A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 300
220
Tensile Strength: Yield (Proof), MPa 160
130

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 980
1090
Melting Onset (Solidus), °C 860
1040
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 64
380
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
100
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 62
41
Embodied Water, L/kg 400
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
29
Resilience: Unit (Modulus of Resilience), kJ/m3 120
76
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.5
6.8
Strength to Weight: Bending, points 11
9.0
Thermal Diffusivity, mm2/s 20
110
Thermal Shock Resistance, points 11
7.8

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Bismuth (Bi), % 0
0 to 0.00050
Copper (Cu), % 83.5 to 87
99.95 to 100
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0.7 to 2.5
0 to 0.0050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.4
0
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
0