MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. Grade 6 Titanium

CC482K bronze belongs to the copper alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 5.6
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 300
890
Tensile Strength: Yield (Proof), MPa 160
840

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 160
310
Melting Completion (Liquidus), °C 980
1580
Melting Onset (Solidus), °C 860
1530
Specific Heat Capacity, J/kg-K 360
550
Thermal Conductivity, W/m-K 64
7.8
Thermal Expansion, µm/m-K 18
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 3.8
30
Embodied Energy, MJ/kg 62
480
Embodied Water, L/kg 400
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120
3390
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.5
55
Strength to Weight: Bending, points 11
46
Thermal Diffusivity, mm2/s 20
3.2
Thermal Shock Resistance, points 11
65

Alloy Composition

Aluminum (Al), % 0 to 0.010
4.0 to 6.0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 83.5 to 87
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.4
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0
0 to 0.4