MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. SAE-AISI 1070 Steel

CC482K bronze belongs to the copper alloys classification, while SAE-AISI 1070 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is SAE-AISI 1070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 99
190 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
10 to 13
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 300
640 to 760
Tensile Strength: Yield (Proof), MPa 160
420 to 560

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 64
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
10
Electrical Conductivity: Equal Weight (Specific), % IACS 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.4
Embodied Energy, MJ/kg 62
19
Embodied Water, L/kg 400
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
59 to 86
Resilience: Unit (Modulus of Resilience), kJ/m3 120
470 to 850
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
23 to 27
Strength to Weight: Bending, points 11
21 to 24
Thermal Diffusivity, mm2/s 20
14
Thermal Shock Resistance, points 11
21 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.65 to 0.75
Copper (Cu), % 83.5 to 87
0
Iron (Fe), % 0 to 0.2
98.3 to 98.8
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.9
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.4
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.080
0 to 0.050
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
0