MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. C10500 Copper

Both CC482K bronze and C10500 copper are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
2.8 to 51
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 300
220 to 400
Tensile Strength: Yield (Proof), MPa 160
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 860
1080
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 64
390
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
100
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 62
42
Embodied Water, L/kg 400
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 120
24 to 680
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.5
6.8 to 12
Strength to Weight: Bending, points 11
9.1 to 14
Thermal Diffusivity, mm2/s 20
110
Thermal Shock Resistance, points 11
7.8 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 83.5 to 87
99.89 to 99.966
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.4
0
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0
0 to 0.050