MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. C19000 Copper

Both CC482K bronze and C19000 copper are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
2.5 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 300
260 to 760
Tensile Strength: Yield (Proof), MPa 160
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 860
1040
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 64
250
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
60
Electrical Conductivity: Equal Weight (Specific), % IACS 10
61

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
42
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
89 to 1730
Stiffness to Weight: Axial, points 6.8
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.5
8.2 to 24
Strength to Weight: Bending, points 11
10 to 21
Thermal Diffusivity, mm2/s 20
73
Thermal Shock Resistance, points 11
9.3 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 83.5 to 87
96.9 to 99
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0.7 to 2.5
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0.9 to 1.3
Phosphorus (P), % 0 to 0.4
0.15 to 0.35
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
0 to 0.8
Residuals, % 0
0 to 0.5