MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. C31600 Bronze

Both CC482K bronze and C31600 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
6.7 to 28
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 300
270 to 460
Tensile Strength: Yield (Proof), MPa 160
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 980
1040
Melting Onset (Solidus), °C 860
1010
Specific Heat Capacity, J/kg-K 360
380
Thermal Conductivity, W/m-K 64
140
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
32
Electrical Conductivity: Equal Weight (Specific), % IACS 10
33

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 120
28 to 690
Stiffness to Weight: Axial, points 6.8
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.5
8.5 to 15
Strength to Weight: Bending, points 11
11 to 15
Thermal Diffusivity, mm2/s 20
42
Thermal Shock Resistance, points 11
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 83.5 to 87
87.5 to 90.5
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0.7 to 2.5
1.3 to 2.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0.7 to 1.2
Phosphorus (P), % 0 to 0.4
0.040 to 0.1
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
5.2 to 10.5
Residuals, % 0
0 to 0.4