MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. Grade 28 Titanium

CC483K bronze belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.4
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 310
690 to 980
Tensile Strength: Yield (Proof), MPa 170
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 990
1640
Melting Onset (Solidus), °C 870
1590
Specific Heat Capacity, J/kg-K 370
550
Thermal Conductivity, W/m-K 68
8.3
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 3.8
37
Embodied Energy, MJ/kg 62
600
Embodied Water, L/kg 400
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1370 to 3100
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.9
43 to 61
Strength to Weight: Bending, points 12
39 to 49
Thermal Diffusivity, mm2/s 21
3.4
Thermal Shock Resistance, points 11
47 to 66

Alloy Composition

Aluminum (Al), % 0 to 0.010
2.5 to 3.5
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 85 to 89
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.7
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.6
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4