MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C14510 Copper

Both CC483K bronze and C14510 copper are copper alloys. They have 87% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 6.4
9.1 to 9.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 310
300 to 320
Tensile Strength: Yield (Proof), MPa 170
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 990
1080
Melting Onset (Solidus), °C 870
1050
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 68
360
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 62
42
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 130
230 to 280
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.9
9.2 to 10
Strength to Weight: Bending, points 12
11 to 12
Thermal Diffusivity, mm2/s 21
100
Thermal Shock Resistance, points 11
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 89
99.15 to 99.69
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.7
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0.010 to 0.030
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tellurium (Te), % 0
0.3 to 0.7
Tin (Sn), % 10.5 to 13
0
Zinc (Zn), % 0 to 0.5
0