MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C18100 Copper

Both CC483K bronze and C18100 copper are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C18100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 6.4
8.3
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
47
Tensile Strength: Ultimate (UTS), MPa 310
510
Tensile Strength: Yield (Proof), MPa 170
460

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 990
1080
Melting Onset (Solidus), °C 870
1020
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 68
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
80
Electrical Conductivity: Equal Weight (Specific), % IACS 10
81

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
40
Resilience: Unit (Modulus of Resilience), kJ/m3 130
900
Stiffness to Weight: Axial, points 6.9
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.9
16
Strength to Weight: Bending, points 12
16
Thermal Diffusivity, mm2/s 21
94
Thermal Shock Resistance, points 11
18

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 85 to 89
98.7 to 99.49
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.7
0
Magnesium (Mg), % 0
0.030 to 0.060
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.5