MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C69400 Brass

Both CC483K bronze and C69400 brass are copper alloys. They have 82% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.4
17
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 990
920
Melting Onset (Solidus), °C 870
820
Specific Heat Capacity, J/kg-K 370
410
Thermal Conductivity, W/m-K 68
26
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
27
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
44
Embodied Water, L/kg 400
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
80
Resilience: Unit (Modulus of Resilience), kJ/m3 130
340
Stiffness to Weight: Axial, points 6.9
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.9
19
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 21
7.7
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 89
80 to 83
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0 to 0.7
0 to 0.3
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
3.5 to 4.5
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0
Zinc (Zn), % 0 to 0.5
11.5 to 16.5
Residuals, % 0
0 to 0.5