MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. 6182 Aluminum

CC484K bronze belongs to the copper alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC484K bronze and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
6.8 to 13
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 330
230 to 320
Tensile Strength: Yield (Proof), MPa 200
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 1000
640
Melting Onset (Solidus), °C 870
600
Specific Heat Capacity, J/kg-K 370
900
Thermal Conductivity, W/m-K 70
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
40
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.4
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 400
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110 to 520
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 10
23 to 32
Strength to Weight: Bending, points 12
30 to 38
Thermal Diffusivity, mm2/s 22
65
Thermal Shock Resistance, points 12
10 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.010
95 to 97.9
Antimony (Sb), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 84.5 to 87.5
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 0.2
0.5 to 1.0
Nickel (Ni), % 1.5 to 2.5
0
Phosphorus (P), % 0.050 to 0.4
0
Silicon (Si), % 0 to 0.010
0.9 to 1.3
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.4
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15