MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. A201.0 Aluminum

CC484K bronze belongs to the copper alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC484K bronze and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 11
4.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 330
480
Tensile Strength: Yield (Proof), MPa 200
420

Thermal Properties

Latent Heat of Fusion, J/g 190
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
650
Melting Onset (Solidus), °C 870
570
Specific Heat Capacity, J/kg-K 370
880
Thermal Conductivity, W/m-K 70
120
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
30
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
90

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 3.9
8.1
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 400
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
22
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1250
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 10
44
Strength to Weight: Bending, points 12
45
Thermal Diffusivity, mm2/s 22
46
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0 to 0.010
93.7 to 95.5
Antimony (Sb), % 0 to 0.1
0
Copper (Cu), % 84.5 to 87.5
4.0 to 5.0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.2
0.2 to 0.4
Nickel (Ni), % 1.5 to 2.5
0
Phosphorus (P), % 0.050 to 0.4
0
Silicon (Si), % 0 to 0.010
0 to 0.050
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Titanium (Ti), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0
0 to 0.1