MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. EN 1.1132 Steel

CC484K bronze belongs to the copper alloys classification, while EN 1.1132 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
12 to 24
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 330
370 to 490
Tensile Strength: Yield (Proof), MPa 200
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.9
1.4
Embodied Energy, MJ/kg 64
18
Embodied Water, L/kg 400
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
160 to 430
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
13 to 17
Strength to Weight: Bending, points 12
15 to 18
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 12
12 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0.13 to 0.17
Copper (Cu), % 84.5 to 87.5
0 to 0.25
Iron (Fe), % 0 to 0.2
98.6 to 99.57
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Nickel (Ni), % 1.5 to 2.5
0
Phosphorus (P), % 0.050 to 0.4
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.4
0