MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. Grade Ti-Pd8A Titanium

CC484K bronze belongs to the copper alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
13
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 330
500
Tensile Strength: Yield (Proof), MPa 200
430

Thermal Properties

Latent Heat of Fusion, J/g 190
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 1000
1660
Melting Onset (Solidus), °C 870
1610
Specific Heat Capacity, J/kg-K 370
540
Thermal Conductivity, W/m-K 70
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 3.9
49
Embodied Energy, MJ/kg 64
840
Embodied Water, L/kg 400
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
65
Resilience: Unit (Modulus of Resilience), kJ/m3 180
880
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 10
31
Strength to Weight: Bending, points 12
31
Thermal Diffusivity, mm2/s 22
8.6
Thermal Shock Resistance, points 12
39

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 84.5 to 87.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.5 to 2.5
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0.050 to 0.4
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Titanium (Ti), % 0
98.8 to 99.9
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0
0 to 0.4