MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. C18400 Copper

Both CC484K bronze and C18400 copper are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
13 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 330
270 to 490
Tensile Strength: Yield (Proof), MPa 200
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 870
1070
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 70
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
80
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 64
41
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
54 to 980
Stiffness to Weight: Axial, points 6.9
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10
8.5 to 15
Strength to Weight: Bending, points 12
10 to 16
Thermal Diffusivity, mm2/s 22
94
Thermal Shock Resistance, points 12
9.6 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 84.5 to 87.5
97.2 to 99.6
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 0 to 0.3
0
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.5 to 2.5
0
Phosphorus (P), % 0.050 to 0.4
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.4
0 to 0.7
Residuals, % 0
0 to 0.5